MOTION OF A THIN LAYER OF A HEAVY FLUID OVER THE SURFACE OF A SOLID BODY

(O DVIZAENSI TONKOAO SLOIA TIAZABLOI ZAIDKOSII PO POVERKGNOSTI TVERDOGO TRLA)

PMM Vol.29, Na 5, 1965, pp. 950-951
A. F. FROLOV
(Moscow)
(Received March 30, 1965)

1. Potential flow of an ideal weightless fluid, spreading in a thin layer over the surface of a solid body, was considered in [1 and 2]. The equations of a plane flow of a slightly curved jet of a heavy fluid of the type considered here have the form [3:

$$
\begin{gather*}
v_{s} \frac{\partial v_{s}}{\partial s}+v_{r} \frac{\partial v_{s}}{\partial r}=-\frac{1}{\rho} \frac{\partial p}{\partial s}-g \frac{d y}{d s}, \quad-k(s) v_{s}^{2}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+g \frac{d x}{d s} \\
\frac{\partial v_{s}}{\partial s}+\frac{\partial v_{r}}{\partial r}=0 \tag{1.1}
\end{gather*}
$$

Here v_{1}, v_{r} are the components of the velocity of the fluid, measured along the axes of an auxiliary curvilinear system of coordinates s, r, in which r lies along a normal to the surface of the solid body, and s is the length of the arc of the directrix L_{1} of the cylinrical surface of the solid body, p and p are, respectively, the pressure and the density of the fluid, θ is the acceleration of gravity, directed against the y-axis of the basic orthogonal system of coordinates $x=x(s)$ and $y=y(s)$ are the equations of L_{1}, and $k(s)$ is the curvature of L_{1}.

Transferring the origin of r to the free stream line L_{0}, we have for $r=0$

$$
\begin{equation*}
v_{s}=v_{0}(s), \quad v_{r}=0, \quad p=p_{0}=\text { const } \tag{1.2}
\end{equation*}
$$

On the basis of the Bernoulli integral for a steady motion, we have $v_{0}^{2}(s)=c_{n}-2 g y(s)$. We shall regard the thickness of the stream $n(s)$, measured along the normal to the surface of the solid body, as a small quantity of the first order.

In view of this, velocity v_{0} can be expressed in the form

$$
\begin{equation*}
v_{s}(s, r)=v_{0}(s) \div u(s, r) \tag{1.3}
\end{equation*}
$$

where $u(s, r)$ is a quantity of the first order of magnitude. Substituting (1.3) into the second equation of syseem (1.1) and bearing in mind that k (s) is also a small quantity of the first order, we ignore the terms of the second and higher orders,

$$
k(s) r_{v}^{2}(s)+s \frac{d x}{d s}=\frac{1}{f} \frac{\partial p}{d r}
$$

From this, taking into account conditions (1.2), we obtain the pressure in the stream

$$
\begin{equation*}
p=\rho\left[k(s) v_{0}^{2}(s)+g \frac{d x}{d s}\right] r+p_{0} \tag{1.4}
\end{equation*}
$$

Using this equation to eliminate pressure p in the first equation of system (1.1) and introducing the usual stream function $\psi(a, r)$ defined by

$$
v_{s}=\frac{\partial \psi}{\partial r}, \quad v_{r}=-\frac{\partial \psi}{\partial s}
$$

we obtain the following nonlinear equation for the stress function

$$
\begin{equation*}
\frac{\partial \psi}{\partial r} \frac{\partial^{2} \psi}{\partial r \partial s}-\frac{\partial \psi}{\partial s} \frac{\partial^{2} \psi}{\partial r^{2}}+\frac{d}{d s}\left[k(s) v_{0}^{2}(s)+g \frac{d x}{d s}\right] r+g \frac{d y}{d s}=0 \tag{1.5}
\end{equation*}
$$

By reference to (1.3), the stream function $\psi(s, r$) can be expressed in the form

$$
\begin{equation*}
\psi(s, r)=\psi_{0}(s, r)+\psi_{1}(s, r) \tag{1.6}
\end{equation*}
$$

where $\psi q^{m} v_{0}(s)$, and function $\psi_{2}(s, r)$ is one order of magnitude smaller than $\psi_{0}(s, r)$. Ignoring in Equation (1.5) all terms involving the products of derivatives of function $\psi_{1}(3, r)$ we obtain the linear equation

$$
\begin{equation*}
v_{0}(s) \frac{\partial^{2} \psi_{1}}{\partial r \partial s}+\frac{d v_{0}}{d s} \frac{\partial \psi_{1}}{\partial r}-r \frac{d v_{0}}{d s} \frac{\partial^{2} \psi_{1}}{\partial r^{2}}+r \frac{d}{d s}\left[k(s) v_{0}^{2}(s)+g \frac{d x}{d s}\right]=0 \tag{1.7}
\end{equation*}
$$

The solution of this equation, satisfying also the conditions of (1.2), is

$$
\begin{equation*}
\psi_{1}(s, r)=r^{2} f(s), \quad \frac{d f}{d s}=-\frac{1}{2 v_{0}(s)}-\frac{d}{d s}\left[k(s) v_{0}^{2}(s)+g \frac{d x}{d s}\right] \tag{1.8}
\end{equation*}
$$

Thus, the stream function of a slightly curved jet of a heavy fluid (to the present degree of accuracy) is

$$
\begin{equation*}
\psi(s, r)=r v_{0}(s)-r^{2}\left(\int \frac{d}{d s}\left[v_{0}^{2}(s) k(s)+g \frac{d x}{d s}\right] \frac{d s}{2 v_{0}(s)}-c_{2}\right) \tag{1.9}
\end{equation*}
$$

To determine the constant c_{1} it is necessary to specify the velocities $v_{\text {, }}$ and v_{r} and the pressure p at the initial section $s=s_{0}$ in the form

$$
v_{r}=\alpha r+\beta r^{2}, \quad v_{s}=v_{0}\left(s_{0}\right)+\delta r, \quad p=p_{0}+\lambda r \quad(\alpha, \beta, \delta, \lambda-\text { const })
$$

where α, β, λ are explicitly defined in terms of the geometric characteristics of the surface over which the flow takes place at $s=s_{0}$ and $\delta=c_{1}$. The thickness of the jet is determined from the condition $\psi(s, h)=Q$, where Q is the rate of flow, since L_{1} is the streamline.
2. We shall now use these relationships to determine the shape of the jet of a heavy fluid on the basis of the given distribution of pressure p_{1} along the streamline L_{1}. etermining the thickness of the jet $m(s)$ to the first approximation [1] on the basis of the velocity $v_{0}(s)$, we obtain from (1.4) the following equation for the shape of the jet:

$$
\begin{equation*}
k(s) r_{0}^{2}(s)+g \frac{d x}{d s}=\frac{r_{0}(s) \Delta p}{Q} \quad\left(\Delta p=p_{1}-p_{0}\right) \tag{2.1}
\end{equation*}
$$

Let p_{1} be a known function $y(s)$, that is $p_{1}=p_{1}(y)$. It is known [4] that

$$
\begin{equation*}
k(s)=\frac{d^{2} y}{d s^{2}}\left[1-\left(\frac{d y}{d s}\right)^{2}\right]^{-1 / 2}, \quad d x^{2}+d y^{2}=d s^{2} \tag{2.2}
\end{equation*}
$$

Therefore, stipulating that $d y / d s=p(y)$, we obtain from (2.1)

$$
\begin{equation*}
-\left(c_{0}-2 g y\right) \frac{d}{d y} \sqrt{1-b^{2}}+g \sqrt{1-b^{2}}=\frac{\Delta p(y)}{Q} \sqrt{c_{0}-2 g y} \tag{2.3}
\end{equation*}
$$

Whence,

$$
\begin{equation*}
1-\left(\frac{d y}{d s}\right)^{2}=\frac{J^{2}(y)}{c_{0}-2 g y} \quad\left(J(y)=\int \frac{\Delta p(y)}{Q} d y+c_{2}\right) \tag{2.4}
\end{equation*}
$$

Using (2.2) to eliminate the length of the arc, we shall obtain the following double quadrature which we can use to define the equation of the trajectory of the jet:

$$
\begin{equation*}
x=\int \frac{J(y) d y}{\left[c_{0}-2 g y-J^{2}(y)\right]^{1 / 2}}+c_{8} \tag{2.5}
\end{equation*}
$$

The constants c_{a} and, c_{3} are determined from the initial point $y\left(x_{0}\right)$ and the initial slope $y^{\prime}\left(\begin{array}{c}x_{0}\end{array}\right)$ of the jet. Let us now consider some particural cases.
a) Let $\Delta p=0, p_{1}=p_{0}$. The trajectory of the free falling jet will be a parabola

$$
2 g y=\left(c_{0}-c_{2}^{2}\right)-\frac{4 g^{2}\left(x-c_{3}\right)^{2}}{c_{2}^{2}}
$$

b) In the case of impact of a jet of heavy fluid against the surface of a static heavy fluid with spwcific gravity y, when at the interface of the jet and the static fiuid there is a discontinuity in the velocities, and the pressure can be assumed equal to the hydrostatic pressure. The trajectory of the. jet will be defined by the quadrature

$$
\begin{equation*}
x=\int \frac{\left(1 / 2 \gamma Q^{-1} y^{2}+c_{2}\right) d y}{\left[c_{0}-2 g y-\left(1 / 2 \gamma Q^{-1} y^{2}+c_{2}\right)^{2}\right]^{1 / 2}}+c_{3} \tag{2.6}
\end{equation*}
$$

BIBLIOGRAPHY

1. Frankl', F.I., Priblizhennyi raschet struinogo potentsial'nogo techenila zhidkosti, rasprostraniaiushchegosia po poverkhnosti tverdogo tela tonkim sloem (Approximate calculation of the potential flow of a jet of fluid flowing in a thin layer over the surface of a solid body). PMM Vol.24, № 2, 1960.
2. Volterra, V., Sur les jets liquides. J.Math.pures appl. 9 S., t.11, №1, 1932.
3. Frolov, A.P., Ploskaia slaboiskrivlennaia struia ideal'noi neszhimaemoi zhidkosti (A plane slightly curved jet of a perfect incompressible fluid). $F M M$ Vol. 28, № 3, 1964.
4. Rashevski1, P.K., Kurs differentsial'noi geometrif (Course in Differential Geometry). Gostekh1zdat, 1950.
